Free Algebra Tutorials!

 Home Exponential Functions Powers Linera Equations Simple Trinomials as Products of Binomials Laws of Exponents and Dividing Monomials Solving Equations Multiplying Polynomials Multiplying and Dividing Rational Expressions Solving Systems of Linear Inequalities Mixed-Number Notation Linear Equations and Inequalities in One Variable The Quadratic Formula Fractions and Decimals Graphing Logarithmic Functions Multiplication by 111 Fractions Solving Systems of Equations - Two Lines Solving Nonlinear Equations by Factoring Solving Linear Systems of Equations by Elimination Rationalizing the Denominator Simplifying Complex Fractions Factoring Trinomials Linear Relations and Functions Polynomials Axis of Symmetry and Vertices Equations Quadratic in Form The Appearance of a Polynomial Equation Subtracting Reverses Non-Linear Equations Exponents and Order of Operations Factoring Trinomials by Grouping Factoring Trinomials of the Type ax 2 + bx + c The Distance Formula Invariants Under Rotation Multiplying and Dividing Monomials Solving a System of Three Linear Equations by Elimination Multiplication by 25 Powers of i Solving Quadratic and Polynomial Equations Slope-intercept Form for the Equation of a Line Equations of Lines Square Roots Integral Exponents Product Rule for Radicals Solving Compound Linear Inequalities Axis of Symmetry and Vertices Multiplying Rational Expressions Reducing Rational Expressions Properties of Negative Exponents Fractions Numbers, Factors, and Reducing Fractions to Lowest Terms Solving Quadratic Equations Factoring Completely General Quadratic Trinomials Solving a Formula for a Given Variable Factoring Polynomials Decimal Numbers and Fractions Multiplication Properties of Exponents Multiplying Fractions Multiplication by 50
Try the Free Math Solver or Scroll down to Tutorials!

 Depdendent Variable

 Number of equations to solve: 23456789
 Equ. #1:
 Equ. #2:

 Equ. #3:

 Equ. #4:

 Equ. #5:

 Equ. #6:

 Equ. #7:

 Equ. #8:

 Equ. #9:

 Solve for:

 Dependent Variable

 Number of inequalities to solve: 23456789
 Ineq. #1:
 Ineq. #2:

 Ineq. #3:

 Ineq. #4:

 Ineq. #5:

 Ineq. #6:

 Ineq. #7:

 Ineq. #8:

 Ineq. #9:

 Solve for:

 Please use this form if you would like to have this math solver on your website, free of charge. Name: Email: Your Website: Msg:

900000 ÷ 300 = ? 30 ÷ 100 = ?

Write 900,000 ÷ 300 as . We are used to seeing the divided – often called the numerator - above the fraction line and the divider (or denominator) below the fraction line. We can write 900000 as 9 × 100000 and 300 as 3 × 100. The task then looks like .

Let us first consider , which equals 3. We should have divided something 100000 time bigger than 9, making the result 100000 times bigger. We should also have divided by something 100 times bigger than 3, making the result 100 times smaller. What results from making something 100000 times bigger and then 100 times smaller? You can think of the latter as 10 times smaller and then 10 times smaller again, each time knocking one 0 off the 100000, leaving 1000 as the net 'adjustment' to the 3.

So .

In the same way, is just because there is the same m -fold increase as the m-fold decrease. Note that this does not work with, for example, (Try taking m = 3 which gives which is 2, not 3). In the case of 30 ÷ 100, (i.e. 30 %), again we start with and then make it ten times bigger (because the divided is 30, not 3) and one hundred times smaller (because the divider is 100, not 1). The net adjustment is 10 times smaller than the 3, namely 0.3

Remember: The correct value of a fraction can also always be found by long division.