Free Algebra Tutorials!

 Home Exponential Functions Powers Linera Equations Simple Trinomials as Products of Binomials Laws of Exponents and Dividing Monomials Solving Equations Multiplying Polynomials Multiplying and Dividing Rational Expressions Solving Systems of Linear Inequalities Mixed-Number Notation Linear Equations and Inequalities in One Variable The Quadratic Formula Fractions and Decimals Graphing Logarithmic Functions Multiplication by 111 Fractions Solving Systems of Equations - Two Lines Solving Nonlinear Equations by Factoring Solving Linear Systems of Equations by Elimination Rationalizing the Denominator Simplifying Complex Fractions Factoring Trinomials Linear Relations and Functions Polynomials Axis of Symmetry and Vertices Equations Quadratic in Form The Appearance of a Polynomial Equation Subtracting Reverses Non-Linear Equations Exponents and Order of Operations Factoring Trinomials by Grouping Factoring Trinomials of the Type ax 2 + bx + c The Distance Formula Invariants Under Rotation Multiplying and Dividing Monomials Solving a System of Three Linear Equations by Elimination Multiplication by 25 Powers of i Solving Quadratic and Polynomial Equations Slope-intercept Form for the Equation of a Line Equations of Lines Square Roots Integral Exponents Product Rule for Radicals Solving Compound Linear Inequalities Axis of Symmetry and Vertices Multiplying Rational Expressions Reducing Rational Expressions Properties of Negative Exponents Fractions Numbers, Factors, and Reducing Fractions to Lowest Terms Solving Quadratic Equations Factoring Completely General Quadratic Trinomials Solving a Formula for a Given Variable Factoring Polynomials Decimal Numbers and Fractions Multiplication Properties of Exponents Multiplying Fractions Multiplication by 50
Try the Free Math Solver or Scroll down to Tutorials!

 Depdendent Variable

 Number of equations to solve: 23456789
 Equ. #1:
 Equ. #2:

 Equ. #3:

 Equ. #4:

 Equ. #5:

 Equ. #6:

 Equ. #7:

 Equ. #8:

 Equ. #9:

 Solve for:

 Dependent Variable

 Number of inequalities to solve: 23456789
 Ineq. #1:
 Ineq. #2:

 Ineq. #3:

 Ineq. #4:

 Ineq. #5:

 Ineq. #6:

 Ineq. #7:

 Ineq. #8:

 Ineq. #9:

 Solve for:

 Please use this form if you would like to have this math solver on your website, free of charge. Name: Email: Your Website: Msg:

## A. What It Means to Rationalize the Denominator

In order that all of us doing math can compare answers, we agree upon a common conversation, or set of rules, concerning the form of the answers.

For instance, we could easily agree that we would not leave an answer in the form of 3 + 4, but would write 7 instead.

When the topic switches to that of radicals, those doing math have agreed that a RADICAL IN SIMPLE FORM will not (among other things) have a radical in the denominator of a fraction. We will all change the form so there is no radical in the denominator.

Now a radical in the denominator will not be something as simple as . Instead, it will have a radicand which will not come out from under the radical sign like .

Since is an irrational number, and we need to make it NOT irrational, the process of changing its form so it is no longer irrational is called RATIONALIZING THE DENOMINATOR.

## B. There are 3 Cases of Rationalizing the Denominator

1. Case I : There is ONE TERM in the denominator and it is a SQUARE ROOT.

2. Case II : There is ONE TERM in the denominator, however, THE INDEX IS GREATER THAN TWO. It might be a cube root or a fourth root.

3. Case III : There are TWO TERMS in the denominator.

Let's study Case II:

2. Case II : There is ONE TERM in the denominator, however, THE INDEX IS GREATER THAN TWO. It might be a cube root or a fourth root.

Example:

For the first part of this discussion, we will ignore the top and\par concentrate on the denominator.

Procedure: Multiply top and bottom by whatever works in order to create a perfect cube in the denominator.

We need to multiply the bottom by something that will make the result a cube...

So we can take the cube root of it here...

Which would cause the radical to be gone down here.

Well...

But we also need to multiply it by an x so that we get x 3 (which is also a cube).

So there, we've gotten rid of the radical in the denominator. We've, therefore, rationalized the denominator. Now we'll look at the entire problem with the numerator included this time.

Remember, whatever we do to the bottom, we must also do to the top.

Original problem:

Here is our adjustment --- what we needed to multiply top and bottom by so the bottom would become a perfect square.

And here we see the result of our multiplication on the bottom. We've created something of which we can take the cube root.

Notice we can cancel the Xs since they are factors and represent the same number.

Answer